A Runtime Composite Service Creation and Deployment Infrastructure and its
Applications in Internet Security, E-Commerce, and Software Provisioning

David Mennie' and Bernard Pagurek2
IThe Bulldog Group Inc., Toronto, ON, Canada
2Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada

dmennie@bulldog.com, bernie(@sce.carleton.ca

Abstract

The creation of composite services from service compo-
nents at runtime can be achieved using several different
techniques. In the first approach, a new common interface
is constructed at runtime which allows the functionality of
two or more components to be accessed from a single entity
while the service components themselves remain distinct
and potentially distributed within in a network. In the sec-
ond approach, a new composite service is formed where all
of the functionality of the service components is housed
within a single new service. In the third approach, a new
composite service is formed where all the functionality of
the service components is extracted and re-assembled into
the body of a single new service.

This paper describes the design of an infirastructure to
support the runtime creation of composite services. An
application to create user-defined security associations
dynamically and deploy them between any two points in the
Internet is presented to exemplify the need for dynamic ser-
vice composition techniques. Some other potential applica-
tions in e-commerce and software provisioning are also
discussed.

1. Introduction

One of the goals of component-oriented programming
has traditionally been to facilitate the break up of cumber-
some and often difficult to maintain applications into sets
of smaller, more manageable components [3]. This can be
done either statically at design-time or load-time, or
dynamically at runtime. Statically selecting ready-made
components to construct an application is sufficient for a
relatively straightforward system with specific operations
that are not likely to change frequently. However, if the
system has a loosely defined set of operations to carry out,
components must be able to be upgraded dynamically or
composed at runtime. It is this need for dynamic software

composition that we will examine in this paper.

One of the key definitions in dynamic service composi-
tion is that of a service component. Our definition of a ser-
vice component is based on ideas from many different
sources. The authors of the TINA (Telecommunications
Information Networking Architecture) service architecture
[7] state that a service component is a self-contained unit of
service construction that provides an identifiable and dis-
tinct part of a service. They also state that a service compo-
nent has an accessible interface. We extend this definition
to include that a service component consists of a self-con-
tained body of code with a well-defined interface, a set of
attributes, and a behavior.

Service components are the basic elements or building
blocks that can be used to construct services. A service
component must have a name, properties, and an imple-
mentation. The properties include a description of the com-
ponent which may include operational constraints, its
dependencies (if any) on other components or infrastruc-
ture, a list of operations that can be reused or composed
with other components, a description of the functionality of
the component, a list of known relationships that it can
form with other components, and any other relevant infor-
mation. The specification may also contain a description of
the behavior of the service component by annotating the
contained operations or methods using a formal language
or structured syntax. The interface used to access the com-
ponent may be described directly in the specification or
indirectly discovered through reflection and introspection
assuming the programming language used to implement
the underlying component has support for these features.
This definition is quite broad and thus allows a wide range
of components to fall within its scope.

A service, much like a service component, is an entity
that has a well-defined interface and behavior. The impor-
tant characteristic that distinguishes a service from a com-
ponent is its visibility to the end-user. A service can be
referenced by a user (i.e., it is visible) and a service compo-
nent cannot be directly referenced by a user. In the service



composition architecture, defined later in this paper, only
the system infrastructure is permitted to interact directly
with the components based on the user’s requests. Individ-
ual components may also be classified as services if they
meet the requirements of both definitions and thus may
provide functionality directly to a user. In general, services
can be created by putting multiple components together
using one or more mechanisms called composition meth-
ods. Such services are referred to as composite services.

Several recent industrial initiatives, most notably
Microsoft’s .NET and Sun’s Open Net Environment
(ONE), are based on the concept of a Web service. A Web
service is more like a service component (according to our
definition) since it communicates by means of XML-based
standards. Our work is not bound to Web services because
we want to research issues that are independent of the com-
munication mechanisms used. We concentrate our efforts
on researching issus that are currently not addressed by the
industrial initiatives.

A composition method is the technique used for creating
services from service components. The syntax and seman-
tics of the detailed procedures needed to successfully form
composite services are described in the composition
method. The composition method also gives the require-
ments for the component’s specification but not its imple-
mentation. Techniques for service composition, in
particular dynamic service composition, will be examined
in the next section.

2. Dynamic Service Composition

Composing services at runtime has some elements in
common with static composition but it also has some
unique objectives. Generally dynamic composition focuses
on adapting running applications and changing their exist-
ing functionality either by adding new features or remov-
ing features. Locating components at runtime requires a
component library or code repository that is integrated with
the software infrastructure that is actually performing the
composition. In other words, the system must be able to
access this repository since dynamic composition is gener-
ally an automated process.

2.1. Why Dynamic Composition is Inherently Dif-
ficult

Composing service components at runtime is a chal-
lenging undertaking because of all the subtleties of the pro-
cedure involved, the many exceptions to the compositional
rules that can occur, and the potential for error. The chal-
lenge lies in dealing with the unexpected issues and incom-
patibilities that arise during assembly in a relatively short

period of time so dynamic composition remains practical.
Problems can be caused by issues related to non-functional
requirements in addition to functional requirements.
Before the actual composition is performed, it is important
to ensure that the constructed software will satisfy the
specified requirements [9]. In dynamic composition, as we
have defined it, it is extremely difficult to predict before-
hand the exact environmental conditions that will exist in a
system at the time a composition is performed. We call this
unanticipated dynamic composition [3], meaning that all
potential compositions are not known and neither the ser-
vice components nor the supporting composition infra-
structure are aware if a particular composition will be
successfully completed until it is actually carried out.

While steps are taken to decrease the chance of a failed
composition, it cannot always be avoided. One of the mea-
sures taken to avoid complications is to bundle a service
specification with each service component that describes
the dependencies, constraints, or potential incompatibilities
for the component. By looking at the specification for each
component of interest before attempting to use them to cre-
ate a composite service, failed attempts can be minimized
or recovered from.

Despite these error handling mechanisms, potential
behavioral interactions within the new composite service,
between the operations extracted from the original compo-
nents, may surface even if the structural composition is
successful. The problem is similar to a program that com-
piles without errors but still fails to execute properly. Com-
pilation is only one part of the successful execution of a
program just as the composition process will not guarantee
the composite service will function correctly. By making
sure the operations of each component are well docu-
mented and accessible, runtime interactions can be mini-
mized. When interactions arise despite a successful
structural composition, it is almost impossible for the com-
position infrastructure to correct the situation. It is the
responsibility of the user to determine if the side effects are
neutral or service affecting. If the interactions cause the
composite service to function incorrectly or behave errati-
cally, the service can be terminated and never reassembled.
However, if the interactions that do occur do not seriously
affect the operation of the composite service, they can sim-
ply be ignored.

2.2. The Case for Dynamic Service Composition

Kniesel [3] provides an excellent example of the need to
perform unanticipated, dynamic changes to a system with-
out discontinuing its operation. He reminds us that the
recent change from national currencies to the Euro, in
many countries in the European Union, could not have
been anticipated. The software used by banks, insurance



companies, and other financial institutions providing
round-the-clock service had to be changed to the Euro
while trying to limit customer impact. Had these software
systems provided support for dynamic adaptation, these
changes could have been made efficiently and with mini-
mal service interruptions. However, many banks needed
days to make the conversion and many were not able to
switch over at all.

There are several key benefits to dynamic service com-
position. The most immediate is the fact that applications
have greater flexibility since new services can be con-
structed to address specific problems if they do not already
exist. Another benefit is users do not need to be interrupted
during upgrades or the addition of new functionality into a
system. In other words, a large set of services can be cre-
ated from a set of basic service components. Also, services
can be assembled based on the demands of an application
or a user. For example, if a user requires an Internet search
engine that will filter out advertising from the results
returned for a particular query, the service can be assem-
bled at runtime and sent to the user. This service may not
have been designed or even conceived ahead of time.

2.3. The ICARIS Architecture

The fundamental challenge in composing services at
runtime is the design and implementation of an infrastruc-
ture that will support the process. Recently, we designed
and implemented an architecture called the Infrastructure
for Composability At Runtime of Internet Services
(ICARIS) [5]. The architecture provides all of the required
functionality to form composite services from two or more
service components that have been designed for compos-
ability.

There are three primary composition techniques that are
supported in the architecture [4, 5]. The first technique al-
lows the creation of a composite service interface. The
composite service interface allows a service component to
remain distinct while providing some or all of its function-
ality through a common interface that it shares with other
service components. In effect, clients can be presented with
a unified interface that makes it appear as though they are
communicating with a single service when in fact their
method calls are just being intercepted by the composite
service interface and redirected to the appropriate service
component. To realize this composite interface, the archi-
tecture extracts the signatures for the composable methods
from each component and combines them into a single
interface. This interface will accept method calls for any
operations provided by its service components and direct
the calls to the appropriate component.

The second technique allows stand-alone composite
services to be created. Here, a set of service components is

interconnected to create a new stand-alone service. The
service components are assembled using a pipe-and-filter
architecture that basically chains the output of one service
component to the input of the next.

The third technique facilitates the creation of a stand-
alone composite service with a single body of code. This
means the composable methods for each service compo-
nent, involved in the composite service, are extracted and
assembled into a new third component. The service specifi-
cations from each of the service components are also
merged into a new composite service specification. One of
the motivations for creating a new third component with a
single specification and a single set of methods is to evalu-
ate the performance of this structure. A composite service
constructed using this technique often takes longer to cre-
ate than using other techniques but it also tends to execute
much faster. It is also the most challenging type of compos-
ite service to create so it is used to define extra require-
ments for the design of the system architecture. Further
detail on the architecture can be found in [5].

3. Applications of ICARIS

3.1. Composable Security Application

One major focus of the computer industry today is to
establish a foundation for “trust” as it relates to the e-com-
merce environment. The primary goal of the prototype
implementation described in this paper is to demonstrate
how dynamic service composition technology can be used
to increase the level of trust that users have towards their
online relationships with other users, Internet service pro-
viders, vendors, and information sources.

3.1.1. Internet Security and Trust Issues in
E-Commerce

Many Internet users are wary of conducting business or
purchasing goods and services online. These users feel the
absence of two people meeting and engaging in a vendor-
to-customer relationship prevents them from properly eval-
uating how the business operates and judging if it is legiti-
mate and safe. The constant threat of computer viruses,
potential business scams, and fraud add to this lack of
human interaction and are enough for users to be reluctant
to embrace new uses of the Internet. It is for this reason
that the parties involved in an online exchange of goods
and services must trust each other implicitly before any
substantial increases in Internet business will take place.

Security at the level of infrastructure is widely available
today. The majority of businesses employ one or many
security techniques in an attempt to gain the customer’s



trust. However, it is not the security of the network link
that is the biggest challenge. The most important issue fac-
ing the Internet today is how to deploy security where it is
needed, when it is needed, in the shortest time possible,
and in as efficient and seamless a manner as possible.
Because the majority of Internet users cannot possibly
understand the intricacies of a security protocol, even the
most robust and well-known security algorithms do little to
increase a user’s notion of trust. Infrastructure-level secu-
rity provides the user with a finite level of online comfort
that will not increase despite improvements in the underly-
ing protocols used. It is only through easy to understand
and interactive improvements in security that further trust
can be obtained.

A software system that can quickly and easily deploy
security software to both the originating and the receiving
ends of a transaction in a manner that is seamless to the end
users would allow a greater level of trust to be achieved in
online business. It is this problem that our ICARIS-based
prototype was developed to solve.

3.1.2. Dynamic Composition of Internet Security
Services

The Composable Security Application (CSA) prototype
is a Jini, JavaBeans, and XML-based implementation of
the ICARIS architecture. The goal of the prototype is to
allow the construction and deployment of security associa-
tions between a client and server in the network in order to
allow security services to be introduced into applications
that do not already have access to security.

Client Server

Client
Security Service

Server
Security Service

Secure
Network
C

Security Association

Figure 1. Security Association

A security association is a relationship between two
network devices that allows the devices to exchange
secured information. For example, after two network nodes
form a security association, the units can send encrypted
information to each other and decrypt each other's mes-
sages. This is illustrated in Figure 1.

In the CSA, the specification of security associations is
carried out at runtime. This means the composite client and
server security services can be constructed dynamically.
The composite services are made up of service components
that each contain a cryptographic algorithm or related piece

of security infrastructure. These service components are
assembled by ICARIS to construct the appropriate com-
posite security services based on the demands of the client
and server for a particular security association. The CSA is
an accessible, robust infrastructure that supports pluggable
security for any application. It is able to establish many
types of security associations. Additionally, it is both fast
enough to assemble and deploy these associations at runt-
ime and flexible enough to add or remove secure services
to meet the applications it serves.

3.1.3. Secure Software Provisioning

In this section, we provide a scenario for how the CSA
could be used for secure software provisioning over the
Internet. In our example, a customer wishes to purchase
software from a major vendor. To increase the customer’s
trust in the vendor, the customer can use the CSA to choose
the security measures he wishes to put in place between the
vendor and himself.

The CSA has a set of predefined security standards for
different types of transactions stored locally. It updates the
customer’s user interface with a set of security choices
based on the type of transaction selected and the security
requirements of the vendor. In this case, the customer
requests that a digital envelope be deployed and this
requirement is sent to the CSA. The digital envelope is an
example of how a symmetric key cryptography algorithm
and a public key algorithm can be combined into a single
service.

The service requirements for a digital envelope are
placed into an XML-based service template by the CSA.
This template is sent to a service broker to retrieve the
required security services. If the service broker locates one
or more service components that satisfy the service tem-
plate, the service objects (proxies) for these components
are returned.

For the digital envelope, in this example, the following
service components are required for the client:

* A service component that can generate an IDEA
(International Data Encryption Algorithm) session
key. IDEA is a commonly used symmetric key
cryptography algorithm.

* A service component that can encrypt the user’s
credit card information using the IDEA algorithm
and the IDEA session key

» A service component that is able to obtain the ven-
dor’s RSA (Rivest-Shamir-Adelman) public key.
Named after its creators, RSA is a commonly used
public key cryptography algorithm.

» A service component that can encrypt the session
key using the RSA algorithm and the vendor’s RSA
public key



» A service component that can send the encrypted
credit card information to the vendor’s composite
security service

The following service components are required for the
vendor:

» A service component that can generate a RSA key
pair (public key and private key)

» A service component that can receive an encrypted
message from a client

» A service component that can decrypt the session
key using the RSA algorithm and the vendor’s RSA
private key

* A service component that can decrypt the message
using the IDEA algorithm and the session key

Once this minimum set of services is obtained, the CSA
will form a client and server pair of composite services
from these service components. The client and server ser-
vices usually differ in the order the service components are
assembled. For example, if the client service encrypts some
data with one algorithm (Algl) and then a second algo-
rithm (Alg2), the server service must decrypt that data in
the reverse order (Alg2 then Algl). For this reason, the ser-
vice components must be assembled in the opposite order
for the server service.

|DEA Obtain

Encrypt
—) |—p{ Credtcardinfo || Server's
P ngﬁ::‘aﬁy with IDEA RSA Public
Session Key Key

i !

- Encrypt IDEA
Service Session Key
(a) Component

Using Server's [—P|

Send Encrypted
Messageand | | 3
Encrypted Key
to Server

RSA Public
Key

Composite
Certifying Service
Authority
(CA)
Decrypt
RSA Receive 4
—> KeyPar  [—®  Message [—| vﬁﬁfzg;‘\/:ﬁg
Generator from Client RSA Private Key
(b) Service
Component Decrypt Credit Info
with IDEA [T
Session Key
Composite

Service

Figure 2. Client (a) and Server (b) Composite
Security Services for a Digital
Envelope

Figure 2a shows a logical view of how the client com-
posite security service will be constructed. It will be
assembled as a stand-alone composite service. Figure 2b
shows a logical view of how the server composite security
service will be constructed. It will also be assembled as a

stand-alone composite service. Note that the RSA Key Pair
Generator in the server security service must generate a
public and private key before the client can use the server’s
public key to encrypt the session key. Also, note that the
service components in the server service are assembled in
the reverse order to their complements in the client service.
This is needed because the session key must be decrypted
before it can be used to decrypt the message.

Finally, the composite services are deployed from the
CSA to the client and server nodes. The services are instan-
tiated and the setup phase begins. At this stage, the client
service establishes a connection with the server service
directly using the protocol agreed upon in the requirements
definition stage. At this point, the customer is informed
that the security association is established, and business
can proceed.

3.2. Other Applications

There are many other applications that could take
advantage of the ICARIS architecture. A brief description
of some of these applications will be provided in this sec-
tion.

The idea of constructing security associations dynami-
cally could be extended to virtual private networks (VPNs)
or other communication channels. The ICARIS architec-
ture could be used to deploy client and server services to
the front and back ends of the communication link that
could consist of many service components including QoS
components, security components, network management
components, and billing components. Custom networking
services that can be created and deployed at runtime would
be quite useful since VPNs often need to be set up tempo-
rarily and on short notice.

Network management services could also be deployed
to a problem node based on the requirements that are
needed at a particular time. For example, if a network out-
age is detected, a remote maintenance service could be
constructed out of various service components that would
perform a battery of network diagnostic tests. These tests
could be selected by a network operator based on the prob-
lem at hand. Other service components that could be used
in network management could include services that gather
network metrics (throughput, traffic density, congestion,
delay, response time), locate faults (i.e., pinpoint exactly
where the network is failing), diagnose faults (i.e., deter-
mine the cause of the problem in the network), or reconfig-
ure a network agent such as an SNMP agent.

4. Conclusions and Future Work

In this paper, we summarized our experiences with the



design and implementation of an architecture (ICARIS) to
support the dynamic composition of service components.
We discussed our Composable Security Application and its
potential impact on e-commerce. We also suggested sev-
eral other potential uses for ICARIS.

One area of future research is to incorporate behavioral
service specifications into ICARIS service components. A
behavioral specification is the formal description of what is
supposed to happen when software executes. The ICARIS
architecture currently makes use of an XML-based service
specification that mainly captures structural information
about a component but not behavioral information. The
architecture could employ a behavioral specification to
verify, statically or at runtime, that the software meets it
requirements. This would also allow the architecture to
make more intelligent choices about which components it
should select for a particular composite service. Interac-
tions could be minimized between components because the
behavior from each component could be understood by the
infrastructure.

Currently, behavioral specifications and formal methods
are not widely used by programmers because the develop-
ment tools are immature and difficult to use. Also, most
programmers do not have a sufficient mathematical back-
ground to be comfortable with using the notations required
in most behavioral specification languages. If behavioral
specification was contract-based, however, it would be
more accessible to programmers. A design by contract
model views the relationship between a class and its clients
as a contract that takes the form of assertions such as bool-
ean invariants, preconditions, and postconditions. Boolean
invariants and preconditions document the contractual
obligations a client must satisfy before calling an operation
in a class. When the client fulfills its obligations, boolean
invariants and postconditions document the class supplier’s
contractual obligations for how the operation must behave
and what it must return.

As we continue to move toward component-based soft-
ware engineering, software development will become less
creative and more routine. The task of the developer will
shift from coding to designing and integrating [8]. There is
an opportunity for the integration of components to be
done at runtime and potentially automatically with the help
of a composition infrastructure such as ICARIS, assuming
it is practical. However, a full quantitative evaluation of the
ICARIS architecture must be carried out in order to accu-
rately assess the feasibility of the various composition
techniques, as well as, their performance and scalability

characteristics. Many additional challenges will need to be
overcome before we can reap the full benefits of dynamic
service composition.

Acknowledgments

The authors would like to thank Vladimir Tosic for his
helpful suggestions and comments. The research in this
paper is supported by Communication Information Tech-
nology Ontario (CITO).

References

[1] Feng, N., G. Ao, T. White, and B. Pagurek, “Dynamic Evolu-
tion of Network Management Software by Software Hot-Swap-
ping”, Accepted for the Seventh IFIP/IEEE International
Symposium on Integrated Network Management - IM 2001, Seat-
tle, Washington, USA, May 14-18, 2001.

[2] Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Sofiware, Addi-
son-Wesley, 1995.

[3] Kniesel, G., “Type-Safe Delegation for Run-Time Component
Adaptation”, In R. Guerraoui (Ed.), Proceedings of the 13th Euro-
pean Conference on Object-Oriented Programming - ECOOP
'99, Springer, Lisbon, Portugal, June 1999.

[4] Mennie, D., and B. Pagurek, “An Architecture to Support
Dynamic Composition of Service Components”, Presented at the
Fifth International Workshop on Component-Oriented Program-
ming - WCOP 2000, held in conjunction with ECOOP 2000,
Sophia Antipolis, France, June 2000.

[5] Mennie, D. W., “An Architecture to Support Dynamic Com-
position of Service Components and Its Applicability to Internet
Security”, M.Eng. thesis, Carleton University, Ottawa, Canada,
October 2000.

[6] Oreizy, P., M. M. Gorlick, R. N. Taylor, D. Heimbigner, G.
Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L.
Wolf, “An Architecture-Based Approach to Self-Adaptive Soft-
ware”, [EEFE Intelligent Systems, Vol. 14, No. 3, May/June 1999,
pp.54-62.

[7] TINA Service Architecture Annex, Kristiansen, L. (Ed.), Ver-
sion 5.0, June 16, 1997.

[8] Voas, J., “Maintaining Component-Based Systems”, [EEE
Software, Vol. 15, No. 4, July/August, 1998, pp. 22-27.

[9] Yau, S. S. and F. Karim, “Component Customization for
Object-Oriented Distributed Real-time Software Development”,
Proceedings of 3rd IEEE International Symposium on Object-ori-
ented Real-time Distributed Computing, March 15-17, 2000.



